

Development and demonstration of novel nonlinear mooring solutions for floating offshore wind

Dr. Faryal Khalid ¹ Prof. Lars Johanning ¹ Prof. Philipp R. Thies ¹ David Newsam ²

¹ University of Exeter² Intelligent Moorings Ltd

Outline

1. Motivation

- 2. Exeter Tether Passive Damper
 - Numerical Studies
 - Field Testing
- 3. Intelligent Mooring System (IMS) Slow Varying Active Damper
 - Numerical Studies
 - Combined Numerical and Physical Modelling

4. Summary

Motivation

- Mooring system A key technical barrier that could deliver considerable cost savings in floating wind.
- Non-linear mooring systems have the desired load reduction characteristics.
- Peak load reduction through the use of:
 - Passive damper Exeter Tether
 - Active damper IMS

Exeter Tether – Passive Damper

- De-couples extension properties of the tether from the Minimum Breaking Load (MBL) of the rope.
- Allows selection of extension characteristics and damping.
- Offers proven load carrying via hollow rope and conventional splicing / connectors.

Exeter Tether – Numerical Studies

Exeter Tether – Numerical Studies

Expected fairlead peak load reduction by introducing a 6 m Exeter Tether section.

Exeter Tether – Field Testing

- Load reduction and component design integrity demonstrated at BiMEP by comparing:
 - 1st deployment: Conventional Polyester
 - 2nd deployment: Exeter Tether
- Tension range and maxima compared for sea states with similar, but not identical, environmental conditions.

(MBL = 130tonnes)

IMS – Slow Varying Active Damper

- Developed by Intelligent Mooring Ltd.
- Provides functionality akin to a shock absorber.
- Internal pressure increase from IMS extension leads to non-linear stiffness.
- Control over internal pressure can tune the system to suit the prevailing metocean conditions.

IMS – Numerical Studies

Configuration	Air volume (m ³)	Pressure (kPa)
A	0.72	158
В	2.62	1198
С	0.85	89
D	2.62	278

IMS – Combined Physical and Numerical Modelling

 IMS performance characterised via combined physical testing at Dynamic Marine Component Test Facility (DMaC) at University of Exeter and OrcaFlex modelling.

IMS – Influence of water depth on load reduction

- Site specific environmental data and NREL 5 MW semi-submersible model for 2 sites with and without the IMS.
- Deepwater site (200 m) and shallow water site (100 m) for rated wind speed

IMS – Influence of water depth on load reduction

- Peak load reduction: 10% at deep water site vs 30% at shallow water site.
- Load reduction potential varies for different wave conditions within the same wind speed bin.

Summary

- Innovative nonlinear mooring systems offer peak load (up to 50%) and cost reduction for floating wind systems
- Working principles of active and passive mooring load dampers have been demonstrated at prototype stage
- Technology development through combined numerical modelling & physical (field) testing approach
- Future work involves:
 - Field testing of the IMS at East Pickard Bay, Wales
 - Component integration into Floating Offshore Wind platforms

Thank you for your time

Dr. Faryal Khalid

f.khalid2@exeter.ac.uk

Acknowledgements

- Carbon Trust Floating Wind Technology Acceleration Competition
- Innovate UK / UKRI grant funding Project Ref 103889
- OPERA EU Horizon 2020 grant agreement No 654444
- SuperGen UKCMER
- Orcina Ltd. for the provision of the OrcaFlex software
- NREL for open access to FAST / FOWT models

